

Predicting pressure coefficients on low-rise buildings using deep neural networks

Youqin Huang¹, Guanheng Ou², Jiyang Fu³, Honghao Zhang⁴

 ¹Research Centre for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China, <u>yqhuang@gzhu.edu.cn</u>
²Research Centre for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China, <u>601942879@qq.com</u>
³Research Centre for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China, jiyangfu@gzhu.edu.cn

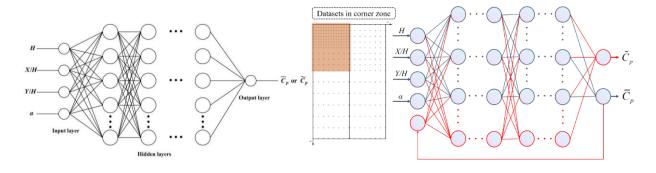
⁴Research Centre for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China, zhangHH@e.gzhu.edu.cn

SUMMARY:

Prediction of wind pressure on buildings is a very important topic in wind engineering. The Artificial Neural Network (ANN) model is the principal method used for pressure prediction since the traditional analytical regression approaches are not effective for such a multivariate nonlinear problem. However, the prediction accuracy is still unsatisfactory in the areas with flow separation, owing to the limited learning capacity of ANNs which have only less than two hidden layers. In the progress of computer hardware and algorithms, the deep neural networks (DNNs) with more than two nonlinear layers have been proposed and applied in many fields of science and technology. Therefore, the DNNs are introduced in this study to predict wind pressure on low-rise buildings. In order to compare the prediction accuracy with the literature and facilitate the precision comparison of further studies, the aerodynamic data used for machine learning are extracted from the internationally open database, i.e. the NIST-UWO database. Also, the prediction results of all taps on the roof are presented by various error metrics. The study demonstrates that in the areas of roof ridge and corner bay, the DNNs model obtains better accuracy than the ANNs model in the literature. For the mean or RMS coefficients, their correlation coefficients between predicted and experimental results exceeds 0.997, and the mean-square-error (MSE) is less than 5%.

Keywords: Deep neural networks, wind pressure prediction, low-rise buildings

1. THE AERODYNAMIC DATABASE AND THE DNNs MODEL


The NIST-UWO database setup by National Institute of Standards and Technology of America and University of Western Ontario in Canada, provides the wind pressure data of low-rise buildings with various plan dimensions, heights, roof slopes and terrain conditions (NIST, 2003). The work of wind pressure prediction using the open database is limited. Chen et al. (2003) employed the data of ss20-test 1 to predict the mean and RMS pressure coefficients on the roof under untrained wind directions. Therefore, the same data packages are used and the same prediction cases are conducted in the present study for comparing the prediction results with Chen et al. (2003). The studied building has the plan dimensions of 80ft×125ft, roof slope β of 1:12, and heights *H* of 24ft, 32ft and 40ft. The numbering of pressure taps on the roof and the definition of wind directions α

is shown in Fig. 1. The training set consists of the data from the wind directions between 270° and 360° (with increment of 5°) except 300° , 320° and 340° under various roof heights, and the testing set includes the data of wind directions 300° , 320° and 340° .

Y	3901	3816	3801	3716	3701	3616	3601	3516	3501		3416	3401	2409	2408	2307	2308
	3902	3815 2	$\frac{3802}{7}$	3715 2715	3702 +	3615 +	$\frac{3602}{2}$	3515 2	3502 4		<u>3</u> 415	3402	²⁴¹⁰	2407 #	2 310	2309
	3903	3 ⁸¹⁴	3 ⁸⁰³	3714	3 703	3614	<u>3</u> 603	3 ⁵¹⁴	3 ⁵⁰³		³⁴¹⁴	³⁴⁰³	2 ⁴¹¹	²⁴⁰⁶	²³¹¹	2306
	3904	<u></u> 3813	3804	3 ⁷¹³	≩ 704	3 ⁶¹³	3604	3 ⁵¹³	3 ⁵⁰⁴		<u>3</u> 413	3404	₽ ⁴¹²	2 ⁴⁰⁵	<u>2</u> 312	2305
	3905	3 ⁸¹²	3 ⁸⁰⁵	3 ⁷¹²	3 ⁷⁰⁵	3612	<u></u> 3605	3 ⁵¹²	3 ⁵⁰⁵		<u>3</u> 412	³⁴⁰⁵	2 ⁴¹³	²⁴⁰⁴	<u>2</u> 313	²³⁰⁴
b.	3906	3811	3806 4	3 ⁷¹¹	3706	3611	<u>3</u> 606	3511	3506 4		³⁴¹¹	3406 4	2 414	2403 4	2 ³¹⁴	3 03
Wind direction	3907	3810 4	3807 4	3 ⁷¹⁰	3707 ¥	3610	3607 4	3 ⁵¹⁰	3507 ¥		³⁴¹⁰	3407 4	²⁴¹⁵	2402	2 ³¹⁵	3 302
a Ann	3908	3809	3808	3709	3708	3609	3608	3509	3508 R	tidge	3409	3408	2416	2401	2316	2301
	+ +	+ +	+ +	+ +	1509	1510	1608	1609	1708		1709	1801	1809	1908	1909	2212
716 801 914 915 1113 1114 1311 1312	* *	* *	* *	* *	1507 1506	Į511	1607	¹ 610	1707		1710	1 ⁸⁰²	1810	1907	1910	3211
715 802 913 916 1112 1115 1310 1313 714 803 912 1001 1111 1116 1309 1314	• •	* *	* *	* *	1505 1504	Į ⁵¹²	1^{606}	Į611	1706		1711	1803	1811	1906	1911	³²¹⁰
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *	+ + + Cor	nệr bạ	+ + +	1503 1502	Į513	1^{605}	ļ ⁶¹²	1705		1712	1804	1812	1905	1912	2209
712 805 910 1003 1109 1202 1307 1316 711 806 909 1004 1108 1203 1306 1401	1::	+ + +	* *	·+ + + +	1501	Į514	1604	1 ⁶¹³	1704		1713	1805	1813	1904	1915	2208
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *	+ + + +	* * *	* *	1415	Į515	1 ⁶⁰³	Į614	1703		1714	1806	1814	1903	1914	2 207
709 808 907 1006 1106 1205 1304 1403 708 809 906 1007 1104 1206 1303 1404	* *	* * *	* *	* *	1413 1412	Į516	<u>‡</u> 602	<u>1</u> 615	1702		1715	1807	1815	1902	1913	2 206
707 810 905 1008 1103 1207 1302 1405	+ +	+ +	+ +	+ +	1412	1105	1601	1616	1701		1716	1808	1816	1901	2110	2205
706 811 904 1009 1102 1208 1301 1406	<u> </u>	+ +	+ +	* *	-	+	+	+	+		*		*		*	x
705 812 903 1010 1101 1209 1216 1407																Λ
104 813 902 1011 1016 1210 1215 1408																
703 814 901 1012 1015 1211 1214 1409																
762 815 816 1013 1014 1212 1213 1410																

Figure 1. Pressure tap layout on the roof

The typical deep neural network used in this study is shown in Fig. 2. In comparison with the ANNs model, more hidden layers can be effectively included in DNNs after Hinton and Salakhutdinov (Hinton and Salakhutdinov, 2006) developed a layer-wise pretraining procedure for training multiple-layer neural networks. For fixing the suitable number of hidden layers (HLs) in the DNNs model, five models with 1, 2, 3, 4 or 5 HLs are built, and it is found that the correlation coefficient generally increases with the number of HLs while the best prediction is obtained when there are 3 HLs, so the number of HLs is set as 3 in this study, and the number of neurons in each HL and other optimum hyper parameters such as learning rate and batch size are determined by the Bayesian Optimization (BO). Moreover, in order to further improve the prediction in the corner zone with flow separation, a nested DNNs model as shown in Fig. 3 is further proposed by adding the mean coefficients as the inputs of the network according to the strong correlation between the mean and RMS pressure coefficients.

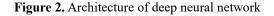


Figure 3. The nested DNNs model for predicting corner zone

2. RESULTS AND DISCUSSIONS

By comparing the predicted results on the corner tap and the corner bay with the literature results (Table 1), it can be seen that this work presents better accuracy than Chen et al. (2003).

U (ft)	~		Corner tap	Corner tap							
$H(\mathrm{ft})$	α		Real	Prediction	Error (%)	bay (%)					
24	300°	DNN	0.308	0.327	5.9	8.2					
	300	ANN	0.308	0.289	-6.2	10.3					
	320°	DNN	0.212	0.213	0.0	7.3					
	520	ANN	0.212	0.230	8.5	9.3					
	340°	DNN	0.299	0.293	-2.8	7.5					
		ANN	0.299	0.331	10.7	9.0					
32	300°	DNN	0.352	0.350	-1.1	9.2					
		ANN	0.332	0.346	-1.7	11.3					
	320°	DNN	0.254	0.252	-1.0	11.8					
		ANN	0.234	0.287	13.0	9.1					
	340°	DNN	0.241	0.344	0.1	5.5					
		ANN	0.341	0.366	7.3	5.3					
40	300°	DNN	0.410	0.381	-7.5	5.3					
		ANN	0.410	0.378	-7.8	9.7					
	320°	DNN	0.292	0.300	2.3	8.9					
	320	ANN	0.292	0.317	8.6	11.8					
	340°	DNN	0.384	0.379	-2.0	8.1					
	3401	ANN	0.384	0.387	0.8	9.5					

Table 1. Comparison of RMS pressure coefficients

The correlation coefficients between the averaged results of 10 runs and the experimental results are 0.999 and 0.997 for the mean and RMS coefficients respectively (Fig. 4). MSEs of all the 3015 samples under all predicted wind directions and roof heights are about 4.5% and 4.8% for the mean and RMS coefficients respectively.

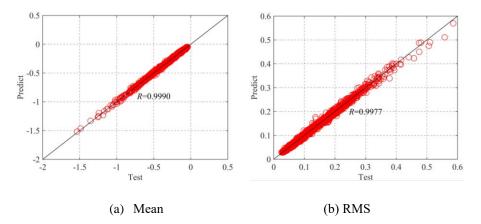
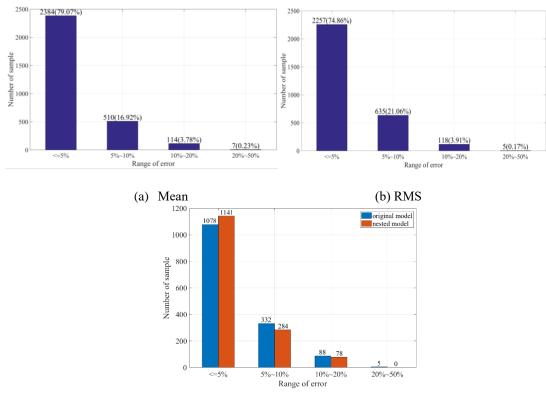



Figure 4. Comparison between predicted and experimental pressure coefficients

The statistics of relative errors are shown in Fig. 5. It is indicated that more than 95% samples having error < 10%. There are about 0.3% samples produce errors > 20% but the pressure coefficients of these samples are very small and they are less significant for the wind effect. Moreover, the errors of 20% are further eliminated by constructing the nested network.

(c) Results of the nested network (RMS)

Figure 5. Statistics of errors for pressure coefficients

3. CONCLUSIONS

The DNNs models obviously improve the prediction accuracy on the roof in comparison with the results of ANNs from the literature. The predictions are robust with the correlation coefficients exceeding 0.99 and the MSEs less than 5% for all predicted cases under various wind directions and roof heights. More than 95% samples have errors < 10% and the errors > 20% are further removed by the method of nested DNNs.

ACKNOWLEDGEMENTS

This work was jointly supported by the "111" Project (No. D21021), National Natural Science Foundation Project (No. 51925802) and Guangzhou Municipal Science and Technology Bureau Project (Nos. 201904010307, 20212200004) of China. Special thanks are also given to the NIST-UWO database for providing the aerodynamic datasets.

REFERENCES

Chen, Y., Kopp, G. A., Surry, D., 2003. Prediction of pressure coefficients on roofs of low buildings using artificial neural networks. Journal of Wind Engineering and Industrial Aerodynamics 91, 423-441.

Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the dimensionality of data with neural networks. Science 313, 504-507.

NIST, 2003. https://www.nist.gov/el/materials-and-structural-ystems-division-73100/nist-aerodynamic-database.