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SUMMARY:

Prediction of wind pressure on buildings is a very important topic in wind engineering. The Artificial Neural Network
(ANN) model is the principal method used for pressure prediction since the traditional analytical regression
approaches are not effective for such a multivariate nonlinear problem. However, the prediction accuracy is still
unsatisfactory in the areas with flow separation, owing to the limited learning capacity of ANNs which have only less
than two hidden layers. In the progress of computer hardware and algorithms, the deep neural networks (DNNs) with
more than two nonlinear layers have been proposed and applied in many fields of science and technology. Therefore,
the DNNs are introduced in this study to predict wind pressure on low-rise buildings. In order to compare the
prediction accuracy with the literature and facilitate the precision comparison of further studies, the acrodynamic data
used for machine learning are extracted from the internationally open database, i.e. the NIST-UWO database. Also,
the prediction results of all taps on the roof are presented by various error metrics. The study demonstrates that in the
areas of roof ridge and corner bay, the DNNs model obtains better accuracy than the ANNs model in the literature.
For the mean or RMS coefficients, their correlation coefficients between predicted and experimental results exceeds
0.997, and the mean-square-error (MSE) is less than 5%.
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1. THE AERODYNAMIC DATABASE AND THE DNNs MODEL

The NIST-UWO database setup by National Institute of Standards and Technology of America and
University of Western Ontario in Canada, provides the wind pressure data of low-rise buildings
with various plan dimensions, heights, roof slopes and terrain conditions (NIST, 2003). The work
of wind pressure prediction using the open database is limited. Chen et al. (2003) employed the
data of ss20-test 1 to predict the mean and RMS pressure coefficients on the roof under untrained
wind directions. Therefore, the same data packages are used and the same prediction cases are
conducted in the present study for comparing the prediction results with Chen et al. (2003). The
studied building has the plan dimensions of 80ftx125ft, roof slope f of 1:12, and heights H of 24ft,
32ft and 40ft. The numbering of pressure taps on the roof and the definition of wind directions a


mailto:yqhuang@gzhu.edu.cn
mailto:601942879@qq.com
mailto:jiyangfu@gzhu.edu.cn
mailto:zhangHH@e.gzhu.edu.cn

is shown in Fig. 1. The training set consists of the data from the wind directions between 270° and
360° (with increment of 5°) except 300°, 320° and 340° under various roof heights, and the testing
set includes the data of wind directions 300°, 320° and 340°.
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Figure 1. Pressure tap layout on the roof

The typical deep neural network used in this study is shown in Fig. 2. In comparison with the
ANNs model, more hidden layers can be effectively included in DNNs after Hinton and
Salakhutdinov (Hinton and Salakhutdinov, 2006) developed a layer-wise pretraining procedure for
training multiple-layer neural networks. For fixing the suitable number of hidden layers (HLs) in
the DNNs model, five models with 1, 2, 3, 4 or 5 HLs are built, and it is found that the correlation
coefficient generally increases with the number of HLs while the best prediction is obtained when
there are 3 HLs, so the number of HLs is set as 3 in this study, and the number of neurons in each
HL and other optimum hyper parameters such as learning rate and batch size are determined by
the Bayesian Optimization (BO). Moreover, in order to further improve the prediction in the corner
zone with flow separation, a nested DNNs model as shown in Fig. 3 is further proposed by adding
the mean coefficients as the inputs of the network according to the strong correlation between the
mean and RMS pressure coefficients.
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Figure 2. Architecture of deep neural network Figure 3. The nested DNNs model for predicting corner zone



2. RESULTS AND DISCUSSIONS
By comparing the predicted results on the corner tap and the corner bay with the literature results
(Table 1), it can be seen that this work presents better accuracy than Chen et al. (2003).

Table 1. Comparison of RMS pressure coefficients
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The correlation coefficients between the averaged results of 10 runs and the experimental results
are 0.999 and 0.997 for the mean and RMS coefficients respectively (Fig. 4). MSEs of all the 3015
samples under all predicted wind directions and roof heights are about 4.5% and 4.8% for the mean
and RMS coefficients respectively.
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Figure 4. Comparison between predicted and experimental pressure coefficients

The statistics of relative errors are shown in Fig. 5. It is indicated that more than 95% samples
having error < 10%. There are about 0.3% samples produce errors > 20% but the pressure
coefficients of these samples are very small and they are less significant for the wind effect.
Moreover, the errors of 20% are further eliminated by constructing the nested network.
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Figure 5. Statistics of errors for pressure coefficients

3. CONCLUSIONS

The DNNs models obviously improve the prediction accuracy on the roof in comparison with the
results of ANNs from the literature. The predictions are robust with the correlation coefficients
exceeding 0.99 and the MSEs less than 5% for all predicted cases under various wind directions
and roof heights. More than 95% samples have errors < 10% and the errors > 20% are further
removed by the method of nested DNNs.
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